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Abstract. Starting from a general Hoffman-type estimate for inequalities defined via convex
functions, we derive estimates of the same type for inequality constraints expressed in terms of
eigenvalue functions (as in eigenvalue optimization) or positive semidefiniteness (as in semidefi-
nite programming).
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1. Introduction and preliminary results

In his celebrated result dating back to 1952 [16], A.J. Hoffman showed how the
ndistance to a convex polyhedron of R could be estimated (from above) in terms of

the affine functions defining it. Numerous works have been devoted since to
extensions of this result, we mention here some recent ones [2, 4, 8, 9, 18, 20, 21].
In the present paper, we start by recalling a general Hoffman-type result obtained in
the context of convex inequalities. We then make it operate for inequalities defined
by some eigenvalue functions, and for inequalities expressed in terms of positive
semidefiniteness of some matrices (such as occurring in semidefinite programming).

Let us fix the notations used in the statement of our preliminary result. For a
given Banach space (X, i?i), we denote by d (resp. d ) the distance associated with*
i?i (resp. the one associated with the dual norm i?i of i?i in the dual space X* of*¯¯ ¯ ¯X); B(x, r) (resp. B(x, r) stands for the ball (resp. the closed ball) centered at x and of
radius r. For a function f : X →R< h1`j, we use the following notations for the
sublevel-sets:

[ f < a]5 hx [X : f(x)< aj , [ f . a]5 hx [X : f(x). aj .

The other definitions and notations, from Convex analysis and optimization (such as
the support function s of a convex set C and the distance function d(? , C), theC

subdifferential ≠f of a convex function f ), are the ones commonly used in such an
area.

We shall mainly rely on the following theorem taken from [4]; for the
convenience of the reader, we provide a self-contained proof of it.
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THEOREM 1.1. Let X be a Banach space, let f : X →R< h1`j be a proper,
convex, and lower semicontinuous function. Then,

f(x)
]]]]inf d (0, ≠f(x))5 inf (1)* d(x, [ f < 0])x[[ f .0] x[[ f .0]

(with the convention that the member on the right is zero if [ f < 0]5 5.)

:Proof. Let s 5 inf d (0, ≠f(x)). Assume that s . 0 and let 0,t ,s. Wex[[ f .0] *
claim that

1
td(x, [ f < 0])< f(x) for all x [ [ f . 0] .

¯Otherwise, there exists x [ [ f . 0] such that

¯ ¯td(x, [ f < 0]). f(x ) .

: :¯Introducing r 5 d(x, [ f < 0]). 0 and g 5 sup( f, 0), we get

¯g(x ), inf g 1tr .
¯ ¯B(x,r)

¯From the Ekeland variational principle [10], there exists z [B(x, r) such that

¯ ¯g(z)< g( y)1tiz 2 yi for all y [B(x, r) ,

so that z is a local (and then global) minimum of the convex function g(?)1tiz 2?i.
It follows that there exists z [ ≠g(z) such that iz i <t. Observe now that f(z). 0*

¯ ¯since ix 2 zi, d(x, [ f < 0]), thus ≠f(z)5≠g(z) yielding the contradiction: f(z). 0
and d (0, ≠f(z))<t ,s. Letting t increase to s, we get*

1
sd(x, [ f < 0])< f(x) for all x [ [ f . 0] ,

hence

f(x)
]]]]inf >s 5 inf d (0, ≠f(x)) ,*d(x, [ f < 0])x[[ f .0] x[[ f .0]

and this inequality is also satisfied if x 5 0.
f(x)
]]]Conversely, let t 5 inf . Assuming that t . 0, we getx[[ f .0] d(x, [ f < 0])

1
td(x, [ f < 0])< f(x) for all x [X .

Let x [ [ f . 0] and let j [ ≠f(x). Given 0,´,t, there exists z [ [ f < 0] such that
ix 2 zi(t 2´)< f(x), yielding

ix 2 zi(t 2´)< f(x)2 f(z)< ij i ix 2 zi ,*

thus ij i >t 2´, hence d (0, ≠f(x))>t by letting ´ go to 0, and then* *
f(x)

]]]]inf d (0, ≠f(x))>t 5 inf ,* d(x, [ f < 0])x[[ f .0] x[[ f .0]

and the previous inequality also holds true if t 5 0. h
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The theorem above tells us that a necessary and sufficient condition for the existence
of a positive real number t . 0 such that

1 1]d(x, [ f < 0])< f(x) for all x [X , (2)
t

is that

inf d (0, ≠f(x)). 0 . (3)*x[[ f .0]

It also proves that inf d (0, ≠f(x)) is then the optimal (i.e., the largest)x[[ f .0] *
positive real number t such that (2) holds true.

A particular case of Theorem 1.1 will be of a constant use in the sequel.

COROLLARY 1.1. Let C ,X* be a nonempty closed convex set such that 0[⁄ C;
let s denote the support function of C. Then, for all l[R, we haveC

1 1]d(x, [s <l])< (s (x)2l) for all x [X , (4)C Ct*
:where t 5 d (0, C).* *

Proof. Let f 5s 2l. Using techniques and results from Convex analysis, theC

following is easy to derive:

[ f . 0]5 5⇒ C 5 h0j ;H[ f < 0]5 5⇒ 0[C .

Hence, our assumption on C makes that both [ f . 0] and [ f < 0] are nonempty.
According to (2),

1 1]d(x, [s <l])< (s (x)2l) for all x [X ,C Ct

where t 5 inf d (0, ≠f(x))). Now, due to the specific structure of the functionx[[ f .0] *
f involved,

≠f(x)5≠s (x),C for all x [X .C

Therefore t > d (0, C)5t , and the inequality (4) is proved. h* *

Theorem 1.1 can be illustrated geometrically. Assuming the three dimensional space
3

R is embedded with the standard euclidean norm,
• the left-hand side of (1) represents the smallest slope of a tangent line to the graph

of f, when x runs through [ f . 0];
• the right-hand side of (1) measures the smallest tangent value of angles a

designed from the triangle x, f(x) and the projection of x on [ f < 0], when x runs
through [ f . 0].

REMARK 1.1. Corollary does not claim that t is the optimal real number such*
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Figure 1. Geometrical interpretation of (1).

that (4) holds true; it just provides a general inequality. In examples below, we
however shall see how such t is shown to be optimal.*

2. Optimal Hoffman-type estimates in some eigenvalue inequality constraints
nLet 6 (R) denote the space of real (n, n) symmetric matrices, endowed with the

standard inner product

T:0A, B)1 5Trace(A B) ,

(also denoted by A ?B in the literature). here, the norm i?i associated with 0? , ?1 is
self-dual, so that d 5 d for the corresponding distances. Note also that i?i is* T‘orthogonal invariant’, i.e., iUAU i5 iAi whenever U is orthogonal. Let further-
more posit

1 n s6 (R)5 hA[6 (R) : A 0j ,n 2

and
2 n a6 (R)5 hA[6 (R) : A 0j ,n 2

s awhere, as usual, A 0 (resp. A 0) means A is positive semidefinite (resp. negative2 2
semidefinite).
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2.1. CONSTRAINT INEQUALITIES INVOLVING THE SUM OF THE m LARGEST EIGENVALUES

nFor an integer m between 1 and n, let f : 6 (R) →R denote the (convex positivelym
nhomogeneous) function which assigns to A[6 (R),

:f (A) 5 sum of the m largest eigenvalues of A . (5)m

We also use the notation l for f (the largest eigenvalue function); note that f ismax 1 n

nothing else than the trace function. The functions f are well understood from them

subdifferential calculus viewpoint (see [22] or [13] for example); the points we raise
here concern the inequality constraint cones

n:_ 5 hA[6 (R) : f (A)< 0j ; (6)m m

2for example, _ is hA[6 (R) : l (A)< 0j, that is 6 (R).1 n max n

Given X [6 (R), there is one and only one matrix in _ closest to X, howevern m

this ‘matrix nearness problem’ (in the sense of [11]) does not have an explicit
solution (apart from the extreme cases m 5 1 and m 5 n). We therefore provide
Hoffman-type estimates of the distance of X to _ .m

2.1.1. Optimal Hoffman-type estimates of d(X, _ )m

The series of inclusions

26 (R)5_ , ? ? ?,_ , ? ? ?,_n 1 m n

induces a series of inclusions in the other way for polar cones

1_ 8, ? ? ?,_ 8, ? ? ?,_ 856 (R) , (7)n m 1 n

where _ 8 denotes the negative polar cone of _, that is

_ 85 hY [6 (R) : 0Y, X)1< 0 for all X [_ j .n

Note here that _ 8 is nothing else than the half-line R I (i.e., directed by then 1 n

identity matrix I ). As a consequence of that and of (7), the projection of aI , a > 0n n

on _ is 0 for all m. See Fig. 2 to support the intuition.m

The function f is known to be the support function ofm

sV 5 hA 0 : Trace A5m and l (A)# 1jm 2 max

(see [22, 13]). In the particular case when m 5 1,

sV 5 hA 0 : Trace A5 1j1 2

is the so-called unit spectraplex of 6 (R).n

We now are ready to derive from Corollary 1.1 the following Hoffman-type
estimate for d(X, _ ).m
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Figure 2.

THEOREM 2.1. We have

]Œn 1]d(X, _ )< ( f (X)) for all X [6 (R) , (8)m m nm

]Œand one cannot do better than n /m in (8).

Proof. The convex compact set V does not contain 0; thus according to Corollarym

1.1:

1 1]d(X, _ )< ( f (X)) for all X [6 (R) , (9)m m nt*

where t 5 d(0, V ). We easily check that the projection of 0 on V is (m /n)I .m m n*
Indeed, for all X [V ,m

2m m m m
] ] ] ]2 I , X 2 I 52 Trace X 1 Trace I 5 0 .S DKK LLn n nn n n n

]ŒTherefore, t 5m /niI i5m / n, and (8) follows from (9).n*
Let a > 0 be such that

1d(X, _ )<a( f (X)) for all X [6 (R) .m m n

:Consider the particular X 5 I /m. As explained earlier, the projection of X on _ isn m
] ]Œ Œ0, whence d(X, _ )5 iXi5 n /m. Since f (X)5 1, we get that n /m <a. hm m
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2.1.2. The extreme cases m 5 n and m 5 1
¯The case m 5 n does not offer much interest: the projection X of X[6 (R) on then

half-space _ is known explicitly,n

1(Trace X)¯ ]]]]X 5X 2 I ,nn
1 ]¯ Œwhence d(X, _ )5 iX 2X i5 (Trace X) / n. The inequality (8) is strengthened ton

equality in that case.
The case m 5 1 deserves to be explored more, although here again the projection

2of any X [6 (R) on _ 56 (R) can be made explicit from X.n 1 n

THEOREM 2.2. For X [6 (R), let (l (X)) denote the eigenvalues of X.n i i51,...,n

Then ]]]]n 1 2(a) d(X, _ )5 o (l (X)) ,1 œ i51 i

(b) d(X, bd _ )52l (X) whenever X is negative definite.1 max

Proof. Part (a) of the conclusion of the theorem is well-known in the area of matrix
approximation problems (see [11, Section 3] for example). We see how to derive it
immediately from the projection operations on the closed convex cones _ 51

2 16 (R) and _ 856 (R).n 1 n

Let U be an orthogonal matrix such that
TX 5U Diag(l (X), . . . , l (X))U . (10)1 n

Then, setting
1 T 1 1X 5U Diag(l (X), . . . , l (X))U ,1 n

and
2 T 2 2X 5U Diag(l (X), . . . , l (X))U ,1 n

1 2 1 2 1 2we realize that X 5X 2X , X [_ 8, X [_ and 0X , X 15 0. Thus, we1 1
1have got at Moreau’s decomposition of X (see, e.g., [12, p. 121]), whence X and

2X are the projections of X on _ 8 and _ respectively. It then remains to calculate1 1

2 2 2d(X, _ ) 5 iX 2X i1

T 1 1 2
5 iU Diag(l (X), . . . , l (X))U i1 n

1 1 2
5 iDiag(l (X), . . . , l (X))i ,1 n

whence (a) follows.
Part (b) for X negative definite, i.e., satisfying l (X), 0, the distance of X tomax

the boundary bd _ of _ and to the complement set of _ are the same. Indeed1 1 1

bd _ 5 hX [6 (R) : l (X)5 0j ;1 n max

int _ 5 hX [6 (R) : l (X), 0j ;1 n max

ext _ 5 hX [6 (R) : l (X). 0j ;1 n max
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where int _ and ext _ denote respectively the interior and the interior of the1 1

complement of _ . We have1

2 2(d(X, bd _ )) 5 infhiX 2 Ai : l (A)5 0j1 max

2
5 infhiDiag(l (X), . . . , l (X))2Bi : l (B)5 0j1 n max

(by making use of (10) for example)
n

2 2
5 inf 2O b 1O (l (X)2 b ) : l ([b ])5 0 .H Jij i ii max ij

i,j i51

Restricting to diagonal matrices B 5 [b ] does not affect this lower bound.ij

Therefore

n
2 2 n(d(X, bd _ )) 5 inf O (l (X)2 b ) : b [R , max b 5 0 .H J1 i i i

1<i<ni51

The lower bound above is achieved for the following choice of b ’s:i

b 5 0 for i such that l (X)5l (X)i 0 i max0 0Hb 5l (X) for i ± i .i i 0

Consequently

]]]2d(X, bd _ )5 (l (X)) 52l (X) . h1 œ max max

We infer from (a)

1]Œd(X, _ )< nl (X) for all X [6 (R)1 max n

which is the optimal Hoffman estimate predicted by Theorem 1.1 for the representa-
tion

_ 5 hX [6 (R) : l (X)< 0j ,1 n max

]Œby observing that ≠f (6 (R))5V and that d(0, V )5 n.1 n 1 1

There is another interesting representation of _ as an inequality constraint, via1

the so-called signed distance function. Indeed, let D : 6 (R) →R be defined by:_ n1

c:D (X) 5 d(X, _ )2 d(X, _ ) for all X [6 (R) ,_ 1 1 n1

cwhere _ denotes the complement set of _ . In a more explicit form,1 1

l (X) if l (X)< 0max max
]]]]D (X)5 (11)H_ n 1 21 o (l (X)) if l (X)> 0 .œ i51 i max

The signed distance to a convex set has been studied in details in [14, Section I.2]
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and [15, Section II.B]. By applying results exposed there, we get the following
description of D as a support function._1

THEOREM 2.3. The function D is convex, positively homogeneous, and Lipschitz_1

of rank 1 on 6 (R). It is the support function of the setn

˜ : sV 5 hA 0 : Trace A> 1, iAi< 1j . (12)1 2

When n 5 2, we can somehow visualize in Figure 3 the three-dimensional euclidean
space (6 (R), 0? , ?1) and the various convex sets therein:2

• _ and _ 8 are ‘smooth’ convex cones (they do not contain faces of dimension 2);1 1

• V is a ‘pancake’ located in the affine plane of equation Trace(?)5 1;1
˜• V is a sort of ‘lunula’ containing V .1 1

Moreover, due to the inequality

1]Œl <D < nl , (13)max _ max1

we have
]˜ ŒV ,V , 2 conv(h0j<V ) . (14)1 1 1

Figure 3.
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2.2. CONSTRAINT INEQUALITIES INVOLVING THE BARRIER FUNCTION log(det)

1 :Let us consider f : 6 (R) →R< h1`j defined as followsn

21log(det(X )) if X s 0 ,f(X)5H
1` otherwise .

The function f is known to be proper, convex, and lower semicontinuous (see [12,
A.4.3]) with

21
≠f(X)5 h2X j whenever X s 0 .

THEOREM 2.4. We have

1 21 1s ]d(X, hM 0 : det(M)> 1j)< (log(det(X ))) for all X s 0 , (15)]2 Œn

]Œand one cannot do better than 1/ n in (15).

Proof. Observe that

s[ f < 0]5 hM 0 : det(M)> 1j ,2

[ f . 0]> dom f 5 hM s 0 : det(M)< 1j .

According to Theorem 1.1, given X s 0,

1 21 1s ]d(X, hM 0 : det(M)> 1j)< (log(det(X ))) ,2 t

where

21
t 5 inf iM i .

hMs0:det(M )<1j

]ŒLet us prove that t 5 n. This amounts to

n 1
]min O 5 n ,2

l .0 li i515 inp l <1i51 i

or, equivalently by taking logarithms,

n

min O exp(22x )5 n .ino x <0 i51i51 i

This is easy to derive by using Karush–Kuhn–Tucker optimality conditions. h
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3. Hoffman-type estimates in semidefinite inequality constraint
mLet B, A , . . . , A [6 (R) and let ! : R → 6 (R) be defined by1 m n n

m
m!(x)5O x A for all x [R .j j

j51

Let us set
m a^ 5 hx [R : !(x)2B 0j .A,B 2

In other words

^ 5 [ f < 0] ,A,B

mwhere f : R →R is defined by

f(x)5l (!(x)2B)5 f (!(x)2B) . (16)max 1

nObserve that (see, e.g., [12]), for all y [R ,

f *( y)5 min f *(Y) .1
ThY[6 (R) : ! (Y )5yjn

As f 5s we get f *5 i , where i stands for the indicator function of the set S.1 V 1 V S1 1

Thus we derive that

f *( y)5 min i (Y) ,V1ThY[6 (R) : ! (Y )5yjn

so that
Tdom f *5! (V ) . (17)1

It is proved in [9] that under the assumption
mthere exists x [R such that !(x )a 0 , (18)0 0

then ^ ± 5 for all B [6 (R), and there exists a positive real number c . 0 suchA,B n

that, for all B [6 (R),n

1 md(x, ^ )< c(l (!(x)2B)) for all x [R . (19)A,B max

It is natural to ask whether or not the estimate (19) holds true when assumption (18)
is replaced by a weaker one:

mthere exists x [R such that !(x )aB . (20)0 0

Relying on [23], this is the case if moreover ^ is bounded, since (20) isA,B

equivalent to the Slater qualification condition for f. This is also the case in a case
where ^ is not necessarily bounded and where (18) is not in force, as shown byA,B

the following theorem. Before stating it, we need to recall the notion of ‘good
asymptotic behaviour’ of a convex function, introduced by Auslender and Crouzeix
in [1]. Following these authors, we say that the closed convex function f : X →R<
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h1`j has a good asymptotic behaviour whenever ( f(x )) converges to inf f fori i[N X

any sequence (x ) ,X such that d (0, ≠f(x )) goes to 0.i i[N i*

THEOREM 3.1. Assume that (20) holds true along with

l (!(x))< 0 implies !(x)5 0 . (21)max

Then there exists a positive real number c . 0 such that

1 md(x, ^ )< c(l (!(x)2B)) for all x [R .A,B max

TProof. We claim that 0[ int(V 1 ker(! )). If not, there exists Y [6 (R)\h0j such1 n

that
T

0Y, Z110Y, ! (X)1< 0 ,

2for all Z [V and X [6 (R), leading to Y [6 (R)>R(! ) and Y ± 0, which1 n n

contradicts assumption (21). Thus there exists h. 0 such that

T
hB ,V 1 ker(! ) . (22)1

TNow, setting f(x)5l (!(x)2B), we have dom f *5! (V ), thus 0[ dom f *max 1

since

s (x)5s (!(x))5l (!(x))> 0T! (V ) V max1 1

mfor all x [R . It follows that
TAff(dom f *)5R (dom f *)2R (dom f *)5R(! ) ,1 1

T T 1since R (dom f *)5! (R V )5! (6 (R)). Now there exists d . 0 such that1 1 1 n
T TR(! )>dB ,! (hB). Relying on (22), we derive that

T TR(! )>dB ,! (V )5 dom f * ,1

thus 0[ ri(dom f *) and then f has a ‘good assymptotic behaviour’ (see [3]). Now
we claim that inf d(0, ≠f(x)). 0. If not, there would exist sequencesx[[ f .0]

m m(x ) ,R and ( y ) ,R such that y [ ≠f(x ), f(x ). 0 and lim y 5 0.i i[N i i[N i i i i→` i

As f has a good asymptotic behaviour, this would lead to inf f(x)> 0,mx[R

contradicting (20). Thus, we can apply Theorem 1.1 yielding the conclusion of the
theorem h

We mention that Burke and Tseng derived in [7] Hoffman’s type estimates in a
general abstract setting. Nevertheless, the general results obtained by these authors,

1such as their Theorem 6 do not apply to our setting since 6 (R) is not polyhedraln
m 1and !(R )16 (R) is not equal, in general, to 6 (R).n n

REMARK 3.1. Assumption (21) in Theorem 3.1 is equivalent to the existence of
TY a 0 such that ! Y 5 0. Indeed, assuming that this property fails, we have
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T 1ker ! > int(6 (R))5 5. Thus, from the Hahn–Banach Theorem, there existsn

Y [6 (R)\h0j such thatn

sup 0Y, Z1< 0< inf 0Y, X1 .
T1 X[ker !Z[6 (R)n

m 2It follows that Y ± 0 satisfies Y [!(R ) and Y [6 (R), thus (21) fails too.n
TConversely, assuming that there exists Y a 0 such that ! Y 5 0, we derive that

T 1 T! (6 (R))5! (6 (R)), so thatn n

T 1 2 T 2(! (6 (R))) 5 (! (6 (R))) ,n n

yielding ^ 5 ker !, that is (21).!,0

nEXAMPLE 3.1. Let H [ S (R), c [R , d [R, and let q be the convex quadraticn
T Tfunction defined by q(x)5 x Hx /22 c x 2 d. Let A be a n 3 n matrix such that

T nH 5 2A A. It is easily seen that [q < 0] is the set of those x [R such that the
matrix

I AxnS DT T Tx A c x 1 d

sis positive semidefinite, or equivalently !(x)1B 0 where2

0 Ax I 0n n!(x)5 and B 5 .S D S DT T Tx A c x 0 d

Observing that

zT T 2 T(z , t)!(x) 5 2tz Ax 1 t c x ,S Dt
Tswe derive that !(x) 0 if and only if Ax 5 0 and c x > 0. Assuming that c [R(H ),2

T swe have c x 5 0 whenever Ax 5 0, thus !(x) 0 if and only if !(x)5 0, so that2
assumption (21) is satisfied. On the other hand, we have

zT 2 T 2 T 2(z , t)(!(x)1B) 5 izi 1 2tz Ax 1 t c x 1 t d ,S Dt
and

zT 2 2 2 2(z , t)(!(x)1B) 1 q(x)(izi 1 t )5 iz 1 tAxi 1 izi q(x) ,S Dt
thus we have

l (!(x)1B)> 2 q(x) whenever q(x)> 0 .min

nAssuming that there exists x [R such that q(x ), 0, then Theorem 3.1 applies.0 0
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